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Cramer-von Mises Variance Estimators for
Simulations

David Goldsman Keebom Kang Andrew F. Seila

Abstract

We study estimators for the variance parameter a2 of a stationary process.
The estimators are based on weighted Cramir-von Mises statistics, and certain
weightings yield estimators that are "first-order unbiased" for a 2 . We derive an
expression for the asymptotic variance of the new estimators; this expression is
then used to obtain the first-order unbiased estimator having the smallest variance
among fixed-degree polynomial weighting functions. Although our work is based
on asymptotic theory, we present exact and empirical examples to demonstrate the
new estimators' small-sample robustness.

Authors' addresses: David Goldsman, School of Industrial and Systems Engineer-
ing, Georgia Institute of Technology, Atlanta, GA 30332, smantisye.gatech.edu;
Keebom Kang, Department of Administrative Sciences, Naval Postgraduate School,
Monterey, CA 93943, 5030ptnavpgs.bitnet; Andrew F. Seila, Terry College of Busi-
ness, University of Georgia, Athens, GA 30602-6255, aseilaQcbacc.cba.uga.edu.

Keywords: Simulation, Stationary Process, Variance Estimation, Standardized
Time Series, Cramir-von Mises Estimator.

1 Introduction

Consider a stationary process Y1, Y 2,..., Y, with mean p. Such processes are often en-
countered in the context of steady-state simulation. For instance, the W's might represent
successive customer transit times in a complicated queueing system that has been run to
steady state. If one is interested in estimating p, the obvious unbiased point estimator
is the sample mean V,,. A measure of the sample mean's precision is Var(Y.), which is
unknown.
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In this article, we investigate new estimators for Var(V.), or equivalently, for
na - n Var(V,,). A related quantity is also of interest-the variance parameter,

a 2 _ lim,- o'2. The literature studies many variance estimation methods; e.g., batch
means, independent replications, spectral analysis, overlapping batch means, regenera-
tion, autoregressive modeling, and standardized time series (STS) (see [3]). The esti-
mators presented herein are based on weighted functionals of standardized time series.
We shall show that the new estimators are asymptotically unbiased for a 2 and that they
have lower variance than competing estimators.

We first give some background. The standardized time series is defined as

T,(t) M Lnt . for 0 :5 t _< 1,

where F - =I }j/j, j = 1,... ,n, and [J is the greatest integer function
(Schruben [20]). Under mild conditions (see Foley and Goldsman [8], Glynn and Iglehart
[9], or Schruben [20]), one can show that

where W is a standard Brownian motion process, B is a standard Brownian bridge
process on [0,1], and =: denotes weak convergence (as n becomes large) on D[0, 1], the
space of right-continuous functions on [0, 1] having left-hand limits. It is well-known
that all finite-dimensional joint distributions of B are normal and Cov(B(s), B(1)) =
min(s,t)(1 - max(s, t)), 0 < s,t < 1. Further, one can express B(t) = tW(1) - W(t); so
it is easy to show that W(1) and B are independent, and thus 9 /'n(37 - i) and oT, are
asymptotically independent.

The remainder of the paper is organized as follows. §2 reviews the STS weighted area
estimator for a2; the weighted area estimator will serve as a benchmark for comparison
in the subsequent sections. §3 presents new estimators similar to weighted Cramir-von
Mises (CvM) statistics, and establishes some of their properties. In particular, we find a
class of CvM estimators that is "first-order unbiased" for o2; these estimators also have
lower variance than that of the weighted area estimator. Performance of the estimators
is studied in §§4 and 5, where we present exact and empirical results, respectively. §6
summarizes and discusses the results of the previous sections. §7 proposes a number of
augmentations to the basic CvM estimator and provides conclusions.
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2 The Weighted Area Estimator

We start with a discussion of the so-called weighted area estimator for a2, first popularized
by Schruben [201. Suppose we define

nA(f; n)n n

and
A(f) - f(t)aB(t)dt,

where f(t) is continuous on [0, 1], not dependent on n, not identically zero, and normalized
so that Var(A(f)) = a 2, i.e.,

Var(jIf(t)B(t)dt) = 2j 'jf(s)f(t)s(1 -t)dsdt = 1. (1)

(The above expression can be simplified a great deal; see [12].) Thus, A(f) - aNor(0, 1).

Goldsman and Schruben [131 (also see [7], [9], and [20]) show that A(f;n) + A(f),
where + denotes convergence in distribution as n becomes large. So by the continuous
mapping theorem (see Theorem 5.1 of Billingsley [2]),

A2(f;n) 2 A 2(f) _ a2X.

Since the limiting random variable A(f) is the weighted area under a Brownian bridge
process, we refer to A2(f; n) as the weighted area estimator for a2.

Before stating the main result on the weighted area estimator, we introduce notation
that will be useful in the sequel. Define the covariance function Rk - Cov(YI, YI+k),
k = 0,±,2,..., and the quantities -y =- -2EO=kRk, F =- fo'f(s)ds, and T
fO fO f(s)dsdt. Further, the notation p(n) = O(q(n)) means that jp(n)/q(n) <5 K as
n -+ oc for some constant K, and p(n) = o(q(n)) means that p(n)/q(n) --+ 0 as n -+ 00.

The main theorem for the weighted area estimator is as follows.

Theorem I (see [8] and [12]) Under mild conditions on the covariance function, the
expected value of the weighted area estimator is

E[A 2(f;n)] = a 2 + [(F- 1)2 + 12n + o(l/n).2n

Under an additional uniform integrability assumption (see Billingsley [2]'s Theorem 5.4
and its preceding comments), the asymptotic variance of the weighted area estimator is
Var(A 2 (f)) - Var(a 2uX) - 2a4.

vvl m=-
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Example 1 The expected value of the weighted area estimator with constant weighting
function fo(t) = V'V1, for all t E [0, 11, is E[A 2(fo;n)] =a 2 + 3y/n + o(1/n). 0

Henceforth, if the bias of an estimator for some parameter is o(1/n), we shall say that
the estimator is first-order unbiased for that parameter.

Example 2 If the weighting function f(t) satisfies F = T = 0 (in addition to the
normalizing condition (1)), then Theorem 1 says that E[A 2(f;n)] = a2 + o(1/n), i.e.,
A2(f; n) is first-order unbiased for a2. Examples of weighting functions yielding first-order
unbiased estimators for a2 are f2(t) - 8/.84(3t 2 - 3t + 1/2) and f(t) = Vr87r icos(27rit),
i= 1,2,... (see [8)). 0

3 The Weighted Cramer-von Mises Estimator

In this section, we propose several estimators for a2 based on different Brownian bridge
functionals. To parallel the discussion of §2, we define

Ekn=l 9(Ay)(.(A))2C(g;n) -

and

) g(t)(o'B(t))2 dt,

where g(t) is a weighting function normalized so that E[C(g)] = a2.

In the sequel, we will require a number of assumptions to hold.

Assumptions

1. The process Y1, Y2 ,... is stationary.

2. The constants y and a2 satisfy X,, =* aW, where

LntJ (VLttj - A)

3. Ek.-o* Rk = a2 > O.

Ea- I;_ k~lj'Z,, < 00.

5. g"(t) is continuous and bounded on [0,11.

6. f' g(t)t(1 - t) dt = 1 (normalizing assumption).
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Remark 1 Assumptions 1-4 are conditions on the underlying stochastic processes.
Glynn and Iglehart [9] list various sets of sufficient conditions for Assumption 2 to hold;
these conditions usually involve moment and mixing conditions. Assumptions 3 and 4
hold for a wide variety of stochastic processes. Assumptions 5 and 6 are simply conditions
on the weighting function. 0

Under the Assumptions, the continuous mapping theorem implies that C(g; n) Z
C(g). Notice that the limiting functional C(g) is the weighted area under the square of
a Brownian bridge; by way of contrast, the weighted area estimator's limiting functional
A2(f) is the square of the weighted area under a Brownian bridge.

The distribution of C(g) with constant weighting function go(t) =- 6, for all t E [0, 11,
was given by Anderson and Darling (1] and Smirnov [22]. Over sixty years ago, Cram&
[4] and von Mises [23] studied statistics nearly of the form of C(go; n) for the special case
of independent and identically distributed (i.i.d.) Y1, Y2,.... Anderson and DarliLg [(1
examined the distribution of C(g) with weighting function gAD(t) E [t(1 - t)]- 1 (which
does not quite meet our continuity assumption). However, the distribution of C(g) with
an arbitrary weighting function has not been explicitly determined; see Durbin [6] for
additional details. With this historical perspective in mind, we call C(g; n) the weighted
Cramir-von Mises (CvM) estimator for a2.

If we observe that

C(g;n) = k =( )k'( -2V2Yk+V2),

then we can give an easy 0(n) algorithm to calculate C(g; n):

Z, Si,S 2 ,- 0

FOR k = 1 TO n
Z4--.Z+Y,

S, 4-- S, + g(i)kZ
S2 4 S2 + g(j)Z2

Z 4- Z/n
C(g; n) .- Z g(n)k 2 - 2Z51 + S2

For now, we will be interested in moments of the CvM estimator. Our main theorem
expresses the expected value of the CvM estimator C(g; n) in terms of its weighting
function g(t) and the covariance function Rk. In what follows, we define G - fJ g(t) dt.

Theorem 2 Under Assumptions 1 through 6,

E[C(g;n)] = ff 2 + 2(G - 1) + o(1/n).
n
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Proof See the appendix. 3

Assumptions 3 and 4 allow us to derive a useful relationship between a2 and a. (cf.
Schmeiser and Song [191):

2 nVar(Y.)I' n- n

=1 Cov(yi, 1r;)

n-1= Ro + 2 F,(1 - -)Ri
i=1 n

= Ro +2 J(1 - )R, -2 F(1 -- )Ri
i=1 i=71n

= A- JR,-2 0 -A
a'i + I + o(1/n). (2)

n

A corollary of the main theorem that gives the analogous expression for the bias of
C(g; n) as an estimator for a. follows immediately from Equation (2).

Corollary 1 Under Assumptions 1 through 6,

E[C(g;n)] = an2 + 2 (G -2) + o(l/n).

Some examples illustrate the consequences of Theorem 2 and Corollary 1. The sim-
plest example assumes a constant weighting function.

Example 3 Theorem 2 implies that the CvM estimator with constant weighting function
go(t) = 6 has expected value E[C(go; n)] = a2 + 5"y/n + o(l/n) = on +4-//n+o(l/n). 3

If G = 1 (subject to the constraints of Assumptions 5 and 6), Theorem 2 implies that
the bias of C(g; n) as an estimator of O2 is o(1/n). In this case, C(g; n) is first-order
unbiased for a2. Indeed, it is possible to give such a weighting.

Example 4 Consider the quadratic weighting function g2;(t) - 51 - c/2 + cd - 150t 2,
where t E [0,1] and c is real. Theorem 2 implies that E[C(g 2;e; n)] = a2 + o(1/n). 0

Similarly, if G = 2 (subject to the constraints of Assumptions 5 and 6), Corollary 1
implies that C(g; n) is first-order unbiased for o,.
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Example 5 Consider the quadratic weighting function j 2;=(t) = 42 - c/2 + ct - 120t2,
where t E [0, 1] and c is real. Since G = fo §2 ;c(t) dt = 2, Corollary I implies that
E[C( 2.•:;n)] = oa + o(l/n). 0

The choice of weighting function g(t) clearly affects the variances of C(g; n) and
C(g). (The choice of weighting function f(t) affects the variance of A2(f; n), but it does
not affect the variance of the area estimator's limiting functional, A2(f), in which case
Var(A 2(f)) = 2oa.) To see how, we shall calculate Var(C(g)). First, we have

Lemma 1 (Patel and Read [16, p. 309]). If R and S are jointly normal, then
Cov(R 2, 2) = 2Cov2 (R, S).

This immediately yields the following theorem on the limiting variance of C(g; n).

Theorem 3 In addition to Assumptions 1 through 6, suppose that the C2(g; n)'s (n =
1,2 .... ) are uniformly integrable. Then Var(C(g; n)) -, Var(C(g)), where

Var(C(g)) = a4'lj jg(s)g(t)Cov(B2 (s),B2(t))dsdt

= 2.o' jj'g(s)g(t)Cov 2(B(s),B(t))dsdt

(by Lemma 1)

= 4a4jg(t)(1 t)2 Jog(s)s 2 ds dt.

Example 6 Consider the constant weighting function go(t) = 6 from Example 3. The-
orem 3 implies that Var(C(g 0 )) = 4o4/5. This limiting variance is significantly smaller
than that of the area estimator, for which Var(A(f)) = 2o4 (Theorem 1). 0

Example 7 Consider the quadratic weighting function g2;,(t) from Example 4; this
weighting function yields a first-order unbiased estimator for o2. Theorem 3 gives
Var(C(g 2;c)) = (c2 -300c+26856)o 4 /2520, a quantity that is minimized by the weighting
function g*(t) g2;1.50 (t), whence Var(C(g*)) = 121r 4 /70. This limiting variance is larger
than that of the CvM estimator using the constant weighting function go(t) (Example 6);
of course, the estimator for a2 based on go(t) is somewhat biased (Example 3). 0

Example 8 For completeness, consider the quadratic weighting function §2;,(t) from
Example 5; this weighting function yields a first-order unbiased estimator for oa. The-
orem 3 gives Var(C(§2 ;c)) = (c2 - 240c + 18144)ar4/2520. This variance is minimized by
the weighting function §*(t) §2;120(t), in which case Var(C(§*)) = 52o4/35. Although
this limiting variance is lower than that of the CvM estimator using g*(t), the minimum-
variance first-order unbiased quadratic weighting function (Example 7), it is still larger
than that of the unweighted estimator using go(t) (Example 6). 13

7



Ideally, we would like to choose a weighting function that minimizes the variance of
the CvM estimat,, for a2 while satisfying the first-order unbiasedness and normalizing
constraints; i.t; find 9(t) that minimizes Var(C(g)) subject to

G =1 = 9(t)t(l - t)dt. (3)

With this goal in mind, suppose that g(t) can be written as an m-degree polynomial in
t, i.e.,

g,,(t M c, t', t E [0, 1],
i=0

for coefficients co, cl,..., c.m and fixed m. After some algebra, the problem becomes that
of finding the coefficients that minimize

'c| cm

Var(C(g.)) 8= iCCJ

r=j•=•= (3 + 3) 1".,(i + j + k)

subject to

E (i+2)(1+3) 1.

We can use Lagrangian multipliers to solve the above system. Here the Lagrangian
is given by

C(co, c1,. . ., c,; AI, A2)

8 nCijC -A, n ~ -A 2 ( n i- 1)
- E E (Eo2++38=o =o(j+3)In6=,(±i+7k) (i+ 2)i+ i_+

where A• and A2 are constants. One takes the vn + 3 partial derivatives of C, sets the
resulting equations to zero, and solves the resulting system of linear equations for the
m + 3 unknown coefficients.

Example 9 It is easy to show via the Lagrangian method that the optimal-variance,
first-order unbiased, quadratic and cubic polynomial weighting function is g9(t) = -24 +
150t - 150t 2, the choice studied in Example 7. The best quartic turns out to be

) -1310 19270t 25230t2  16120t 3  8060t4

21 + 21 7 + 3 3

in which case Var(C(9g)) = 1.042a 4 . We can go further. For example, the polynomial
weighting function of degree m = 6 that minimizes Var(C(g 6)) subject to the constraints
(3) is given by g;(t) - E=o 4t', where the ci's are as follows.

8



i1 0 1 2 3 4 5 6-
c, -132.9358 3439.9542 -26622.7987 93037.7083 -163198.9022 140016.0576 -46672-0191

This choice of weights yields the optimal Var(C(g,)) = 0.8093o4, which is comparable to
the variance of the unweighted (albeit biased) estimator C(go; n). 01

Remark 2 In order to achieve further variance savings, we can continue to increase the
degree of the polynomial weighting function. However, the magnitudes of the resulting
coefficients become quite large, and one must be careful to avoid round-off error as well
as deleterious second-order effects for small sample sizes. 3

4 Some Analytical Examples

This section presents exact analytical results involving specific stochastic processes. We
shall first obtain some useful expressions for the expected values and variances of the
area and CvM estimators. We assume in the sequel that Assumptions 1 through 6 are
still in effect.

We begin with an intermediate result on the area estimator.

E[A 2(f;n)] = Var(A(f;n))

~2nnW f V f(-L)CoV(T-( T,"(4

i=1 j=1n nn n

1~z n-1n-1
(4)-" ' i=l 3=1

Further, if A(f; n) is normal, then Lemma 1 implies that

Var(A 2(f;n)) = 2Var 2(A(f;n)) = 2(E[A 2(f;n)]) 2. (5)

The analogous result on the expected value of the CvM estimator is derived next.
,-2- g( kE[T,(k)]

E[C(g;n)] = E -=,
n k=1 na n
~2n-1 k )VrT(k

= - g(-Var
~k=1 n

k=1

"9



In addition to the standing Assumptions, suppose that Y1, Y2,.... , Y, are jointly nor-
mal. Then

a'£ 4 n n i ,CVT2 (j,
Var(C(g; n)) = 2 E g(E)g(- )Cov(Tn(n),T,(L))

2 --- •g('.)g(-)Cov2(T,,(_),Td())
n n n n

(by Lemma 1)

2 n-1,n-1
- ]i•2X g(.9( )g(j)ij,2Cov2(V -, - Vn- V,). (7)

ni ni

We now have at our disposal the machinery to study specific examples in which we
calculate the exact expected values and variances of A2(f; n) and C(g; n) for various
weighting functions.

In particular, for the remainder of this section, we shall work with a first-order moving
average [MA(1)] process, Yi+. = ec, + ci+,, i = 1,2,..., where the c,'s are i.i.d. Nor(O, 1);
so R= 1 + 62, R*1 = 6, and R, = 0, otherwise. One can derive

Var(Vj) - (1 + )2 26 2 a2 (8)j j2 j '- +j2(8
and

C o v F • , ,) ( 1 + 0e ) 2 02 -
COV(,Fk)= ( -+.L + for k<j, (9)

j jrk 2jk
where a2 - (1+6)2 and "y = -20. Note that for the MA(1) process, Equation (8) implies
that a2 a 2 + -, a result that agrees with Equation (2).

Example 10 We concentrate here on some area estimator expectation results for the
MA(1) process. For the constant weighting function fo(t) = vT2, Equations (4), (8),
and (9) show that

E[A 2(fo;n)] = (a2 + )(1 a2= + 3- + o(i/n),

as implied by Example 1. For the first-order unbiased weighting function f2(t) =
8v4'()(3t2 - 3t + 1/2), we have (also see [81)

E[A 2 (f 2; n)] = a2(2n' + 7n 4 + 63n 2 - 72) + 21-y(2n 4 - 5n 3 + 10n 2 + 5n - 12)
2n6

= a2 + 7(a2 + O(n- 3 )2n2
= a2 + o(l/n),

which is indeed first-order unbiased for a2 and thus is in accord with Example 2. 03
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Example 11 We consider CvM expectation results for the MA(1) process. For the
constant weighting function go(t) = 6, Equations (6), (8), and (9) show that

E[C(go; n)] = 02 + 5" -a + 6-y "tn n2 +0

=al + 5- + o(2/n),
n

as implied by Example 3. For the quadratic weighting function g2;c(t) = 51 - c/2 + ct -
15002, we get

o2(n 4 + 4n 2 - 5) -y(24n3 - 29n 2 + 5)
E[C (92;c; n)] 0 + nn4 +n5

= a2 + 4(a2 + 6"t) + O(n-3 )
n2

= o2 +o(1/n).

This demonstrates that g2;c(t) yields a first-order unbiased estimator for a2 (independent
of the choice of c), as implied by Example 4. For the optimal quartic weighting function
g*(t), we have (after a great deal of algebra)

EfC(g*; n)] = a2 + 655(a2 + 6-t) + 0(n-") = a2 + o(l/n),
63n 2

which shows that this weighting function yields a first-order unbiased estimator for a2 , as
anticipated by Example 9. Similarly, the optimal sixth-degree weighting function gý(t)
gives

E[C(g,;;n)] = 2+ 2 2 .1 5 6 ( + 6 y) + o(n-2) = a2 + o(1/n),
n2

so that this weighting function also produces a first-order unbiased estimator for a 2.

Notice that the n-' term in the expression for E[C(9g; n)] is quite large compared to
the n-2 terms from the estimators incorporating quadratic or quartic weights; in fact, as
alluded to by Remark 2, large values of n are required before the second-order term in
E[C(g6; n)] becomes insignificant.

For completeness, we give results on the quadratic weighting function j2;€(t) = 42 -
c/2 + cd - 120W2. In this case, we find that (after some algebra)

E[C(4 2;c; n)] a2(n4 + 3n2 -4) t(n 4 + 18n 3 - 23n2 +4)
n4 ns

= o2+ 2+ 3 (a 2 +6-y)+O(- 3 )"n n2 +On3
= a.' + o(Xl/n),

which demonstrates that this weighting function produces a first-order unbiased estimator
for a,2 (independent of the choice of c), as implied by Example 5. 0

.I1



Example 12 Since the MA(I) is a jointly normal process, we can easily derive area
estimator variance results for it. Equation (5) and Example 10 imply that for weighting
functions fo(t) = vT• and f2(t) = 184(332 - 3t + 1/2), we have Var(A 2(f;n)) -
2a4 + o(1). These results make sense in light of Theorem 1. 3

Example 13 We examine the variance of the CvM estimator for various weighting func-
tions. For the constant weighting function go(t) = 6, Equation (7) gives us (after tedious
but straightforward algebra)

4 a.4 16-yo. 2  4 a4 +
Var(C(go;n)) -+---5-- +O(n-) 5

as implied by Example 6. For the (variance-optimal and first-order unbiased for '2)
quadratic weighting function g*(t) = -24 + 150t - 150t2, some algebra yields

Var(C(g2; n)) = 1.7286a 4 + 4.0571"ya2 + O(n- 2 ) = 1.7286W4 + o(1),
n

as implied by Examples 7 and 9. For the (variance-optimal and first-order unbiased for
02) quartic weighting function 9g(t), we can obtain

Var(C(g*; n)) = 1.0418a4 + 3 n8235"o2 + O(n- 2 ) = 1.0418a4 + o(1),

as implied by Example 9.
Finally, for the (variance-optimal and first-order unbiased for a2) quadratic weighting

function §*(t) = -18 + 120t - 120t2, some algebra yields

Var(C(§;;n)) = 1.4857a4 + 3.6571"02 + O(n- 2 ) = 1.4857a4 + o(1),2

as implied by Example 8. 0

We see from the above examples that the area and CvM estimators behave as adver-
tised on the simple analytical MA(1) example. The CvM estimator using the Anderson-
Darling weighting function (which fails to satisfy some of the Assumptions) does not
behave so nicely.

Example 14 To complete our series of examples with the MA(1) process, we consider
the expected value of the Anderson-Darling estimator, i.e., the CvM estimator with
weighting function 9AD(t) = 1t(1 - t)]-'. Then it can be shown that

E[C(gOAD;n)] = a2(1- )-2 -1- 2"

%: oa2(1 _ I ) - 2(1 - -n-2(t~n(n - 1) + c.))
n n n

=0 +2-ytn(n -1) +0(Inn))

12



where c. - 0.577216 is Euler's constant. Although this estimator is asymptotically
unbiased for a , the convergence rate of the expectation to a2 is much slower than those
of the previous examples. 0

We resort to Monte Carlo simulation in the next section to empirically evaluate the
performance characteristics of the various estimators on more complicated stochastic
processes.

5 Empirical Examples

In this section, we present empirical examples illustrating the performance characteristics
of the following variance estimators:

* A 2 (fo; n) - unweighted area estimator.

e A2(f 2; n) - first-order unbiased quadratic area estimator for a2.

* C(go; n) - unweighted CvM estimator.

0 C(gAD; n) - Anderson-Darling estimator.

* C(g•; ni) -- minimum-variance first-order unbiased quadratic CvM estimator for r2.
* C(g*; n) - minimum-variance first-order unbiased quartic CvM estimator for a2.

9 C(g,; n) - minimum-variance first-order unbiased sixth-degree CvM estimator for
"2"

* C(§; n) - minimum-variance first-order unbiased quadratic CvM estimator for

These examples involve the Monte Carlo simulation of a number of stationary stochas-
tic processes:

"* The first-order autoregressive process [AR(1)], Y,+i = oY ci+ , i = 1,2,..., where
the ci's are i.i.d. Nor(0, 1 - 02) with -1 < 0 < 1.

"* The first-order exponential autoregressive process [EAR(l)], Y,+j = 4Y1 + ci+1,
i = 1,2,..., where the ci's are i.i.d. exponential(l) with probability 1 - 0 and 0
otherwise, and where 0 : 0 < 1. (See Lewis [141 for more details.)

* The M/M/1 queueing system's waiting-time process.

"13



Table 1: Estimated Expected Values of Various Variance Estimators - AR(1), 46 = 0.9.
(Note that a 2 = 19.0 for this process.)

n Al(fo;n) A:(f2;n) C(go;-) C(PAD;,) C(g*;n) ¢(9;;n) ¢-(g6;n) ¢(.#•;n) or 7

4 0.289 0.402 0.225 0.177 0.316 0.294 0.222 0.298 3.5245
(0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

8 0.974 0.966 0.698 0.576 0.940 0.757 0.674 0.892 6.1855
(0.004) (0.004) (0.003) (0.002) (0.004) (0.003) (0.003) (r, '%04)

16 2.837 2.677 2.041 1.701 2.747 2.168 1.847 9.8346
(0.013) (0.012) (0.008) (0.007) (0.012) (0.008) (0.007)

"32 6.533 6.439 4.934 4.141 6.580 5.262 4.481 6oa1 13.5681
(0.029) (0.029) (0.019) (0.015) (0.028) (0.019) (0.016) (0.026)

64 11.269 11.889 9.186 7.812 11.925 9.903 8.645 11.377 16.1908
(0.050) (0.053) (0.033) (0.026) (0.050) (0.034) (0.028) (0.046)

128 14.914 16.200 13.148 11.476 16.119 14.395 12.811 15.525 17.5938
(0.067) (0.072) (0.044) (0.035) (0.066) (0.047) (0.039) (0.062)

256 16.836 18.017 15.752 14.236 17.968 17.207 16.073 17.525 i8.2969
(0.076) (0.081) (0.049) (0.040) (0.074) (0.055) (0.046) (0.068)

512 17.989 18.824 17.349 16.164 18.783 18.507 17.924 18.496 18.6484
(0.081) (0.085) (0.052) (0.043) (0.078) (0.059) (0.051) (0.072)

1024 18.372 18.875 18.084 17.285 18.838 18.867 18.617 18.687 18.8242
(0.082) (0.084) (0.053) (0.044) (0.078) (0.060) (0.052) (0.072)

2048 18.799 19.064 18.599 18.073 19.027 19.091 18.932 18.941 18.9121
(0.084) (0.085) (0.053) (0.045) (0.079) (0.061) (0.054) (0.073)

For both the AR(1) and EAR(1) processes, the covariance function Rk = 4)IkI, k -

0, ±1, ±2,.... The covariance function of the M/M/1 waiting time process is more com-
plicated (cf. Daley [5]).

We simulated the above stochastic processes over a variety of parameter values; rep-
resentative results are presented in Table 1 (AR(1) with 4) = 0.9), Table 2 (EAR(l) with
4) = 0.9), and Table 3 (M/M/1 waiting time process with arrival rate 0.8 and service rate
1.0). Each table entry in a row is based on the same 100,000 independent replications
of the stochastic process. The number in parentheses below an entry is the standard
error of that entry. Each of the replications was initialized from the appropriate steady-
state distribution. All uniform [normal] random variates were generated from algorithm
UNIF [TRPNR•] in Bratley, Fox, and Schrage 13]; exponential deviates used inversion; the
M/M/I waiting-time process was generated from an algorithm due to Schmeiser [18].
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Table 2: Estimated Expected Values of Various Variance Estimators - EAR(I), 0 = 0.9.
(Note that a' = 19.0 for this process.)

n A N( fo;,n ) A '(f 2; n ) C (go;,n ) C (g A D ;,n ) C (g *; n ) C (g ; n ) C (g *;n ) C ( i 2;n ) 7 ,.,
4 0.295 0.410 0.229 0.180 0.322 0.299 0.226 0.303 3.5245

(0.004) (0.006) (0.003) (0.002) (0.005) (0.004) (0.003) (0.004)
8 0.979 0.971 0.703 0.580 0.946 0.764 0.677 0.897 6.1855

(0.009) (0.010) (0.007) (0.005) (0.010) (0.007) (0.006) (0.009)
16 2.859 2.700 2.059 1.717 2.770 2.188 1.866 2.627 9.8346

(0.021) (0.021) (0.014) (0.011) (0.021) (0.015) (0.012) (0.019)
32 6.554 6.504 4.960 4.160 6.630 5.281 4.497 6.296 13.5681

* (0.040) (0.041) (0.027) (0.022) (0.040) (0.029) (0.024) (0.037)
64 11.303 11.892 9.201 7.824 11.934 9.932 8.570 11.388 16.1908

(0.063) (0.067) (0.043) (0.035) (0.062) (0.047) (0.039) (0.058)
128 15.008 16.241 13.218 11.536 16.198 14.491 12.884 15.602 17.5938

(0.078) (0.084) (0.053) (0.044) (0.077) (0.059) (0.050) (0.072)
256 16.942 18.125 15.821 14.289 18.081 17.246 16.138 17.629 18.2969

(0.082) (0.088) (0.055) (0.047) (0.080) (0.063) (0.055) (0.074)
512 17.984 18.810 17.345 16.161 18.771 18.511 17.925 18.486 18.6484

(0.085) (0.087) (0.056) (0.048) (0.080) (0.064) (0.057) (0.074)
1024 18.374 18.841 18.088 17.286 18.835 18.925 18.592 18.685 18.8242

(0.084) (0.086) (0.055) (0.047) (0.079) (0.063) (0.055) (0.073)
2048 18.719 18.955 18.552 18.029 18.985 19.039 18.849 18.898 18.9121

(0.085) (0.086) (0.054) (0.046) (0.079) (0.062) (0.055) (0.073)
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Table 3: Estimated Expected Values of Various Variance Estimators - M/M/I Waiting
Time Process; arrival rate = 0.8, service rate = 1.0

n A'(fo; n) AI(f 2 ; n) C(go;n) C(gAD; n) C(g*;,n) C(g;,n) C(g*;,n) C( *;,n)
16 30.9 28.0 21.6 18.0 29.1 22.9 19.5 27.6

(0.2) (0.2) (0.1) (0.1) (0.2) (0.1) (0.1) (0.2)
32 93.9 85.3 66.4 55.5 89.5 70.5 59.7 85.1

(0.6) (0.5) (0.4) (0.3) (0.5) (0.4) (0.3) (0.5)
64 251.7 235.7 182.9 153.2 245.5 194.4 165.2 235.0

(1.7) (1.6) (1.1) (0.9) (.6) (1.1) (0.9) (1.5)
128 574.0 562.2 434.5 365.7 577.1 464.1 396.1 542.6

(4.5) (4.4) (3.0) (2.4) (4.4) (3.1) (2.5) (4.0)
256 1002.1 1035.6 810.4 690.7 1047.3 875.5 756.2 1019.0

(9.1) (9.2) (6.2) (5.0) (9.0) (6.5) (5.3) (8.7)
512 1415.6 1541.2 1228.0 1065.4 1532.2 1327.5 1180.1 1493.9

(14.4) (15.4) (10.1) (8.3) (14.6) (10.9) (9.0) (14.6)
1024 1708.8 1827.8 1563.1 1398.0 1824.8 1710.9 1569.0 1769.4

(18.4) (19.3) (13.2) (11.1) (18.0) (15.2) (12.8) (16.3)
2048 1831.7 1919.2 1749.5 1616.4 1922.7 1879.0 1803.4 1921.2

(17.0) (17.5) (12.6) (11.2) (15.8) (15.0) (14.0) (15.7)
4096 1914.4 1986.6 1867.3 1767.7 1979.7 1958.5 1918.1 1954.2

(14.2) (14.7) (10.6) (9.9) (13.0) (12.2) (12.3) (13.2)
8192 1970.7 2016.0 1940.9 1870.6 2008.2 2009.8 1980.5 1944.3

(12.3) (12.4) (8.9) (8.5) (11.1) (10.3) (10.2) (10.3)
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6 Discussion

This section summarizes and discusses the exact and estimated expectation and variance
results for the variance estimators examined in §§2-5. Recall that we obtained exact
results for area estimators in §2 and for CvM estimators in §3. We also gave exact results
for a specific stochastic process, the MA(1), in §4 and empirical results for the AR(l),
EAR(l), and M/M/1 in §5. The estimated expected values given in Tables 1-3 are based
on 100,000 replications; thus, one can obtain estimated variance results from the Monte
Carlo runs by squaring the estimated standard errors (in parentheses below the estimated
expected values) and then multiplying by 100,000.

For each of the stochastic processes under study, the expected value of the unweighted
area estimator A2(fo; n) converged relatively slowly to a 2 as n increased. This phe-
nomenon is due to the estimator's comparatively high Bias(A 2(fo; n)) ; 3-1/n (Example
1; also see [17]).

The expected value of the unweighted CvM estimator C(go; n) converged more slowly
than that of A2(fo; n) to a.. This makes sense since Bias(C(go; n)) - 5-y/n (Example 3)
is higher than A2(fo; n)'s. On the plus side, we see that for large n,

Var(C(go; n))/Var(A 2(fo; n)) :, 20' = 0.4,
2a4~

as suggested by Theorem 1 and Example 6.
The expected value of the Anderson-Darling CvM estimator C(gAD; n) converged even

more slowly than that of C(go; n) to a'. Although we did not prove the inferiority of
the convergence rate of E[C(gAD; n)] to a2 for general stationary processes, the evidence
provided by Example 14 and the empirical work seems to be overwhelming. Some calculus
shows that

Var(C(gAD)) 7 (--- O 4)o. : 0.5797a4

(cf. [21]); but it is of little comfort that C(gAD; n) has the lowest variance of the estimators
under study.

The expected values of the first-order unbiased quadratic area estimator for or2
A2(f 2; n), and the minimum-variance first-order unbiased quadratic CvM estimator for
v.2 C(g*; n), converged comparatively quickly to a2 as n increased; the rapid convergence
is a direct consequence of the first-order unbiasedness of the estimators. For large n, we
see from Examples 12 and 13 and the empirical tables that

Var(C(g; n))/Var(A2(f; n)) •. 121/140,

as predicted by Theorem 1 and Example 7.
The minimum-variance first-order unbiased fourth- and sixth-degree CvM estimators,

C(g*; n) and C(g6; n), respectively, possess expected values that converge to a2 almost
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(but not quite) as quickly as those of A2(f 2; n) and C( 9; n). A favorable property of these
higher-degree estimators is that they have reduced variances; the variance improvements
are along the lines described in Example 9.

Recall that the estimator C(§; n) is first-order unbiased for o2 (Example 5). We
can compare the estimated expected values from Tables 1 and 2 with the corresponding
actual ay2-values (given in the last column of the tables). We see that the bias of C(j; n)
as an estimator for a,2 is about the same as Bias(A 2(f 2;n)) and Bias(C(g*;n)); this is
particularly true for large n. In addition, Var(C(*; n)) is only a little smaller than
Var(C(g*; n)). Thus, we do not seem to gain much by using C(ý;; n) to estimate n,.c

The bottom line: Of the estimators studied so far, it appears that C(g2: n) performs the
best.

7 Conclusions

In this article, we introduced a class of estimators for a 2 - limn--., n Var(7,) that are
similar to Cramir-von Mises statistics. Using appropriate weighting functions, our CvM
estimators were shown to be first-order unbiased, and asymptotic variance reductions
of up to 60% (compared to the weighted area estimator) were achievable. Further, the
variance-optimal weighting functions can be computed independently of the output pro-
cess. Our conclusions were supported with an analytical example using the MA(1) pro-
cess.

Although the estimators are all asymptotically unbiased for a 2, finite-sample bias
can be substantial. Analytical and empirical work showed that the bias of the CvM
estimators converged to zero at least as fast as that of the weighted area estimators, and
the CvM estimators had smaller variance. Thus, if the sample size is sufficiently large,
the CvM estimators proved to be more efficient than the weighted area estimators.

As discussed in [10], it is possible to augment the basic CvM variance estimator in a
number of ways.

1. One can show that the unweighted CvM and area estimators are highly correlated.
This suggests that certain linear combinations of the area and CvM estimators will
give rise to estimators having comparatively lower variance.

2. All of our work so far has assumed that we have one long batch of n observations.
An alternative way of organizing the data is to break the n observations into b
contiguous, nonoverlapping batches, each of size m (assume n = bin). This leads to
another interesting problem-that of examining the consequences of batching the
data and then forming CvM estimators from each batch. Intuitively, batching of the
data will tend to increase estimator bias while decreasing estimator variance--of
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course, one can quantify the trade-off by calculating the batched CvM estimator's
mean nuared error. (See Schmeiser and Song [19].)

3. We can also apply the methodology of Meketon and Schmeiser [15] in which the
n observations are broken into n - m + I overlapping batches, each of size m.
Although the bias of the resulting overlapped CvM estimator is the same as that of
the batched CvM estimator, the overlapped estimator's variance is much smaller.

The above problems are the subjects of ongoing research and will be the topics of a
future paper.
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Appendix

This appendix contains the proof of Theorem 2. Before proving the theorem, we state
and prove a series of lemmas. First, we define the cumulative sums ZI, -= = 1'3 and
the variance time curve V(k) =_ Var(Z&), k = 1,2,... ,n (see [11]). Since g(t) is assumed
to be continuous and bounded on [0, 1], we denote M S supo<,<i Ig(t)l < oo.

Lemma 2 Under the Assumptions of §3,
00

V(n) = na2 +,y-2 (n,-i) O = ,a2 +_f+o(1).
i n,

Proof Follows from the arguments leading to Equation (2). 0

Lemma 3 (The discrete-time version of a result given in [11].) Under the Assumptions
of §3, if n > k, we have

2 Cov(Z,,, Zk,) = V(n) + V(k) - V(n - k).

Proof By stationary increments,

V(n) = Var(Z(n) - Z(k) + Z(k))
= Var(Z(n) - Z(k)) + Var(Z(k)) + 2Cov(Z(n) - Z(k), Z(k))

= Var(Z(n - k)) + V(k) + 2Cov(Z(n), Z(k)) - 2V(k). 0
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Lemma 4 Under the Assumptions of §3,

Jgk k2J S 2 = (3).
k= n I k=1

Lemma 5 Under the Assumptions of §3,

n 0 n-I n-I< M•k 3EjlRjl+EjlRjl+ E jjR, I
kS=l j=n jffk jfn-

= M •n(n + 1) jiR3I + nF k2[R•I
j=n k:=1

- o(n2).

Lemma 6 Under the Assumptions of §3,

g(-) >2(j - k)Rj
k=l1 " ~

< M>2ZjIRI
k=1 j=k

M M k 2 &Rk1 + Mn _, 2 jR I
k=1 j=n+l

- o(n).

Lemma 7 Under the Assumptions of §3,

V(n) g( )k2 o2++o(1)) n g(k )k 2 = (n2 + -V) g()k+2 o().

k= n k-l k=1n

Proof Follows from Lemmas 2 and 4. 0
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Lemma 8 Under the Assumptions of §3,

£ g(-)kCov(Z., Zk)

n k r2 2 00 00 00

- 5_g(-)k ka '+ +,(j- n)Rj+Z(j-k)Rj- j-(n-k))RA
k • .1•n j=k jr~n-k

= r g(Ig k2+2 9) k+ o(n 2).

k=1 k=1

Proof Follows from Lemmas 2, 3, and 5. E

Lemma 9 Under the Assumptions of §3,

g('v(k)- - _Fg( ) ka +t+2_(j- k)RJ]
k=1 n k=1 n j-k

- a2 g()k g()+o(n).
k = 1 k = ---

Proof Follows from Lemmas 2 and 6. 3

Lemma 10 (Trapezoid Rule). If e"(t) is continuous and bounded Vt E [0, 11, then

1 n k e(O)- C(1)
e()ds = di e(-)+ + o(l/n).

We can finally prove Theorem 2.

Proof (of Theorem 2).

E[W 2 (n)J = I g( )k2 E[(CV, - )21
k-I

-V(n) k2 2 n k + " _n k
Vn. 4 ,g(-)k'2 E g(-)kCov(Z., Zk) + - g(-)V(k)

.. nnk 1 n

[n2 F, ;3- 1: k=IE- W3

(by Lemmas 7, 8, and 9, and algebra)

= a2 Jg(t)(t _ t2))dr + I g(t)(2 - t + 1)dt + o(l/n)

(by Lemma 10).
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Application of Assumption 6 completes the proof. 0

Remark 3 It is quite a bit easier to prove the continuous-time version of the theorem
(cf. [11]).
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